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On A Sequential Subset Selection Procedure

. For Exponential Family Distributions *

1 by

4 TaChen Liang
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¢

i Abstract

) " This paper deals with the problem of selecting the best population among k popu-
{' ‘ lations belonging to the same class of exponential family distributions through sequential
:: subset selection approach. We desire that the best population should be selected and
" each selected population should be good. Based on the modified likelihood ratio of the

conditional frequency function of some statistics, an elimination-type sequential subset se-
lection procedure is proposed. This sequential procedure achieves the selection goal with
guaranteed probability at least P* for some prespecified value P*. At each stage, this
procedure also provides some statistical inference about an upper bound on the measure
of separation from the uiknown best population to each remaining contending popula-

-
"“

X

‘Q

tion. Finally, a modified sequential procedure to select a good population is also studied.

: This modified sequential procedure achieves the goal of selecting a good population with

guaranteed probability at least P*. “p

; =

¥
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On A Sequential Subset Selection Procedure )

For Exponential Family Distributions

1. Introduction N
I

{

Consider designing and analyzing an experiment for comparing k populations N
T1,...,Mk. Suppose that observations can be obtained from the k populations sequen- ':.
\)

tially. It is often desirable to terminate sampling from a population as soon as there is ::

statistical evidence that it is not the best population, and this population is eliminated
from further consideration. Selection through sequential comparison with elimination pro-

vides a significant advantage. To achieve a certain accuracy, it requires, on the average,

\]
substantially fewer samples than the fixed sample size procedures. ;
In sequential selection and ranking procedures, contributions have been made to select "
the best population by using the indifference zone approach. The simplest formulation of _..
the indifference zone approach is the situation where one may wish to select only a single ES
population and guarantee with a prespecified probability that the selected population is X
the best population provided some other condition on the parameters is satisfied, usually ::
an indifference zone. However, in the real situation, it is hard or not possible to specify .'::
such a condition. Thus, a reasonable and useful approach is to derive some sequential El
selection procedure to select a small subset containing the best population. Further, it is ¥
desired that each of the selected populations should be not far from the best population. .f
Therefore, some statistical inference is needed to assert that each selected population is :'

within some prespecified distance from the best population.

In this paper, we assume that the random observations from population 7; has a

frequency function f(z]0;) of the form

/(z10:) = exp{Q(6:) P(z) + R(z) - B(6:)}- (1.1)

Here, P(z) and R(z) do not involve the parameter 8, while Q(8) and 3(8) do not depend

on z. The function Q(6) is assumed to be a continuous, strictly increasing function of 4.
Define 6;; = Q(0,) — Q(0;) as a measure of separation from m; to m;. This particular

2

- "~y x ”yw > N ~» - > " o™ W
“’l'."l.‘ 't'.l. _l""-"l."l."‘.'.l “0.‘.L l?..!v"l".l ."!“l..‘!,‘.l Lot YL l‘. .;,_0...‘ b Y, .r...:..'l W .l‘« 90" 1, - L ‘y""l‘c I.. t"‘.’..“ﬂ WSt LA NS



[T UTVR TUPUTOR SR WA RN TON LN 3 o0°R 8YR 10 B 8°2 & FR G RUNURLY UN UYIATOUTROTRONRD B tat vat "ol v f val) i@ “ol & 9 4,8 ¢

¢ separation measure has been considered by Bechhofer, Kiefer and Sobel (1968). We call
¢ n; the best population if 7; is the unique population such that Q(6;) = lxga.éckQ(oj). If
<5<

x more than one population has this property, one of them is tagged and considered as the

:: best population. Since the function Q(6) is increasing in 6, the population associated
3 with ) = 121?_%(1: 6, is the best population. We let (k) denote the index of the best
y population and denote the best population by m(x). We note that a sequential procedure
l:, for selecting the best population from among exponential family distributions through
:: the indifference zone approach has been derived by Hoel and Mazumdar (1968). Perng

and Groves (1977) have also derived two sequential procedures for partitioning a set of

one—parameter exponential populations with respect to a control. Since it is assumed

4

‘;:. that there is no prior information about the possible configurations of the measures of

*: separation é;5,¢,7 = 1,...,k,1 # j, thus, subset selection approach is more appropriate

here. However, for the usual subset selection approach (for example, see Gupta (1965)),

:: the size of the selected subset is a random number, and the quality of each of the selected

:: populations cannot be guaranteed. In the fixed sample size case, Gupta and Santner (1973)

" and Santner (1975) introduced restricted subset selection procedures in which the size of

;:' the selected subset is at most m, where 1 < m < k — 1. In this paper, we try to control

':2 the quality of the selected populations.

" For a prespecified positive constant §*, we say that population =, is good if Q(8(x)) —

;- Q(0;) < 6* and bad otherwise. Let S denote the selected subset and CS(6*) denote the

E‘. event that m(x) € S and é(x); < 6* for all 7; € S. We desire a sequential subset selection

o procedure P such that

.. Pg{CS(6*)|P}>P* forallfecn (1.2)
where P*(k~! < P* < 1) is a preassigned probability leveland 1 = {8 = (6,,...,0k)|f(z|6))

is well defined, t = 1,...,k} is the parameter space.

g For this particular measure of separation é;;, "ve consider an appropriate transforma-

.) tion of the random observations taken from any two populations. With this transformation,

| the likelihood function of the new statistics can be factored into two pa-ts, one of which,

obtained by a conditional argument, and termed the conditional likelihood function, is a

53
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function only of the parameter of interest. Based on this conditional likelihood function,
a sequential subset selection procedure is derived. This sequential subset selection pro-
cedure achieves the selection goal described above. At each stage, it also provides some
statistical inference about the bounds of separation between each remaining population
and the unknown best population. Finally a modified sequential procedure to select a
good population is also studied. This modified sequential procedure achieves the goal of

selecting a good population with guaranteed probability at least P*.

2. Some Properties Associated with Exponential Family Distributions

Let X;. denote the nth observation taken from population ;. It is assumed that
the random observations X;n,n = 1,2,... are independently distributed with the common

frequency function f(z|6;),t = 1,...,k. For each pair (i,5),1 <1¢,7 < k,i # 7, let

Wij(n) = (P(Xin) = P(X;n))/2, Zij(n) = (P(Xin) + P(X;n))/2. (2.1)

Then, (W;;(n), Zi;(n)) have a joint frequency function
9(w, 2|0:,6;) = cexp{i;w + (Q(68:) + Q(0;))z + a(z,w) — B(6:) — B(8;)}a(w,2), (2:2)
and given Z;;(n) = 2, the conditional frequency function of W;;(n) is
g(wlz, bi;) = exp{bijw + a(z,w) — ¥(2, i)} a(w, 2), (2.3)

where

(a) a(z,w) = R(z+w)+ R(z — w),

(b) ¥(z,6) =log waA, exp{éw + a(z,w)}dw,

(c) The set A is the support of the random vector (W;;(n}), Z;;(n)), (2.4)
and A; = {w|(w, z) € A}, and

(d) cis a constant such that g(w, 2|6,,0;) is a frequency function.

Note that for each 2, (w,z) € A iff (—w, 2) € A. Thus,w € Az ifandonlyif —w € Az.
Also, a(z,w) = a(z, —w). Hence, by the definition of ¥(z,6), ¥(z,6) = ¥(z, —6).

From (2.3), it is clear that g(w|2,6;;) has exponential family distribution an. hence

has monotone likelihood ratio property. Therefore, Es[h(W;;(n))|Z:;(n)] is nondecreasing

4
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of W;;(n), for any &, are:
(

= \115 (Z, 50),
6=5o

(2.5)

= \1155(2,60) > 0.
5=60

Vars, (Wi;(n)| Zi;(n) = 2) = £5¥(2,6)

\

The following lemma can be obtained easily based on the above discussion.

Lemma 2.1. For each z belonging to the domain of the random variable Z;;(n),
(a) ¥(z,6) = ¥(z,—6) from all §.
(b) ¥(z,6) is a convex function of é.
(c) W(z,86) is strictly increasing (decreasing) in é for all § € |0, 00)
(6 € (—o0,0}), and ¥(2,0) = ir61f U(z,6).
(d) Ws(2,80) is strictly increasing in 8o, ¥5(2,0) = 0 and W¥s(z, —60) = —V¥s(z,60). ,

(e) Let a;,az,b; and b; be points such that a; < ay < bz,a; < b; < b,.

Then W(z,b;)—¥(z,a;) < \Il(z.bz)—\ll(z,ag).

by —a, ba—az

(f) For each fixed z, define

in § whenever h(w) is any nondecreasing function of w. Also, from the usual theory for the
exponential family distributions, for given Z;;(n) = 2, the conditional mean and variance
4
! I(b]z) = b¥s(z,b) — W(z,b) + ¥(z,0). (2.6)

Then, I(b|z) > 0 for all b and I(b|z) > 0if b # 0. !

' 3. A Sequential Subset Selection Procedure P(H,6*)

Let 6" > O be the prespecified value used to define the event CS(6*). Let H(y) be a

distribution function satisfying Condition A. '

Condition A: H(y) is a distribution function defined on the interval [0, 6] such that for

some constant ¢o € (0,6*), the interval [0, co] is contained in the support of H.
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For each a > 0,n > 1 and each pair (1, j), define

I3 11 oW (m)|Zi5(m), ) ()

Lii(n’a) = s (3.1)

T1 oW (m)|255(m), —a)

where g(w|z,6) is the conditional frequency function defined in (2.3). We now define a
sequential subset selection procedure P(H,6*) as follows:
Let So = {m1,...,mx}. For each n > 1, define

k-
Sn = {7!',' c Sn_1|L,-,~(n,0) < 1 1

forall m; € Sp_1 — {m}}. (3.2)

— P*

That is, S, is the set of contending populations up to stage n. At stage n, population
m; € Sp is labelled as good if L,;(n,6*) > 1kT—Pl7 for all 7; € S, — {m;}. Let |S,| denote
the size of the set Sy,. If either |S,| = 1 or all the populations in S, have been labelled as
good then the procedure terminates and we take S = S, as the selected subset; otherwise,

we go to the next stage. The procedure is continued in this way.

Termination with Probability One

In order to apply the sequential selection procedure P(H,6*), we need to assert that
this procedure terminates with probability one. As described above, the distribution func-
tion H(y) is chosen to satisfy Condition A. It is also assumed that Condition B holds true,

where

Condition B: Wss(z,b) < M(b) a.e. (Z;;(n)) for each b > 0, where M(-) is bounded on the
interval [a, 00) for each a > 0. That is, there is a finite function ¢(-) such that M(b) < ¢(a)

forall b>a > 0.

It is not hard to verify that many exponential family distributions, including normal,

exponential, binomial, satisfy Condition B.

To prove the procedure P(H,6"*) terminating with probability one, it suffices to show
that for any two populations, say 7; and 7y, with probability one the event E occurs,

where E is the event that either one of them will be eliminated (in comparison with the

6
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other) or both of them are labelled as good. Without loss of generality, it is assumed that
6, > 0. For simplicity, in the following of this section, we let k = 2 and § = (4,,0;).

! Defining stopping times T; and T> as follows:

i

t

: = ma'x{Tij’isj =1,2,1 # j} (33)
B

;. where

Iy . . k-1

:: T;; = min {nlL.-,-(n,& ) > =P } s (3.4)
s

. and

i T; = min { n|L1s(n,0) > ——— (3.5)
" 2 12 3 - 1 _ P* . .

g’

That is, T} is the random time at which both 7; and 7, have been labelled as good

- o -
s

(assuming no elimination) and T3 is the random time at which 7, is eliminated by m
)‘
K (assuming that m; cannot eliminate 7, and there is no labelling for good). Note that
t
b {T1 < 00 or T2 < oo} C E. Thus, it suffices to prove that Pg{T; < oo or T3 < oo} = 1 for
¢ ~

all possible configurations of the parameter .
" We have the following two lemmas. The proofs are given in the Appendix.
.
b Lemma 3.1. Under Conditions A and B, Pyp{T; < oo} = 1if 8, > 6.
' Lemma 3.2. Under Condition A, P0{T1 <oo} =1if 4, =40,.
& Thus, one can see under Conditions A and B that Pg{Tl <oworT; < o0} =1
. -~
N for all possible configurations of the parameter 8. Hence, under Conditions A and B, the
4
M sequential subset selection procedure P{H,6*) terminates with probability one.
4. Probability of A Correct Selection
: For each n > 1, let %;(n) denote the o-field generated by the random variables
E‘ (Wij(m), Zi;(m),m = 1,2,...,n). Then, we have the following lemma.
L
| Lemma 4.1. Eg{Ly;(n,&;)|%i;j(n — 1)] = Liy(n — 1,6;;) foralin > 1 and § € 0.
i 4
0

7
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Proof: Note that

Eg|Lij(n,85:)| Fij(n — 1)]

5 n
= Ey [/0 exp {(y +85¢) Y Wij(m) - Z [¥(Z:(

m=1

§° n—-1
=/0 exp{(y+6,-,-) ZW.'J'( Z[‘I’ i

m=1

where A;;(0,y,n) = Eglexp{(y + 6;:)Wij(n) — ¥(Z;;(n),

¥(Zi;(m), 6 )]} dH (y)|%ij(n - 1)]

—¥(Zij(m), 6, )]}A:‘j(e,y’n)dﬂ(y),

y) + ¥(Zij(n),6;)}] and the

second equality is obtained from Fubini’s theorem and by the independence between

(W,-j(n),Z.-j(n)) and ?}j(n - 1). Now,

Aij(8,y,n) = Eg [Es,; lexp{(y + 6;0)Wij(n) — ¥(Zij(n),y) + ¥(Z:ij(n),6;:)}| Zij(n)]] = 1

and therefore, the result follows.

Theorem 4.1. Let {S,} be the sequence of the sets of contending populations determined

by the sequential subset selection procedure P(H,6*) through (3.2). Then, for all § € Q.

k
Po{Litx)(n, 6k ,4) <
provided that Conditions A and B hold.

Proof: Note that for any § € (1.

k-
Po{Ligky(n, 6(k),s) < 1

k-
o

k —
>1- z Pg{Li(k)(n,5(k),i) >

P
= 1= Pp{Litx)(n,6x),)) 2

1
i=1 I_P‘

2 (k)

for some n > 1}.

for all m; € Sp—1 — {m(x)} foralin > 1}

— for all 7y € Sp—1 — {m(x)} for all n > 1} > P*,

for some 7; € Sp—1 — {7m(x)} for some n > 1}

(4.1)

By Lemma 4.1, {L;x)(n,6(),:), Fi(x)(n);n > 1} forms a nonnegative martingale.

Thus, from a lemma of Robbins and Siegmund (1973), for ¢ # (&),

k-1
Po{Lik(n:6x).i) 2 T—pv

W W

for somen > 1} <

1- P*
k—1"

» v L P PO TR Y
IS *w “-“- ;
u,o c’l'o .x',’l.s. .o.l.“. . ‘ (N ™ 5 "\

"'\-"-\." ol

(4.2)
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Then by (4.1) and (4.2), the result follows.

For each pair (¢,7) and a > 0, let B;j(n,a) denote the event that L;;j(n,a) < Tk——%'
That is Bij(n,a) = {Lij(n,a) < l—"_:,,’—_} The following result is very helpful for obtaining

some sequential estimate of an upper bound on (),i,¢ = 1,2,...,k.
Lemma 4.2. Let a and b be any two nonnegative values such that b6 > a > 0. Then,
B;j(n,b) C B;j(n,a) for alln > 1. (4.3)

Proof: Suppose that the statement of (4.3) is not true. Then, there exists some n > 1

such that
k-1
1- P+

Lij(n,b) < < Lij(n,a). (4.4)

By (3.1), we have
Lij(n,b) = Lij(n,a) exp{(b—a) Y_ Wi;(m) + Y _ [¥(Zij(m),b) — ¥(Zi;(m),a)]}. (4.5)

(4.4) and (4.5) together imply that

3 Wislm) < 7= 3~ [(Zi(m), 8) = (Zi;(m), )] (46)

m=1

Then, by (4.4) and (4.6),

1<
< L.'jfn,a)
= /06 exp {(y +a) y 1 Wij(m) + i:l[\I/(Zu(m),a) - ‘I’(Zij(m),y)]} dH(y) (4.7)
5" n
< /o exp {—(y +a) "12::1 Qij(m,y,a,b)} dH(y),
where
Qui(m.y,a,b) = ‘I’(Z:'j(m);y)_—(_‘l;()zij(m),a) _ ‘I’(Za‘j(m),(:z; :EI’_(bZ)ij(m)a‘b).
9
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By Lemma 2.1 and the fact that —b < —a < y for each y € [0,6*], we have, for each .: ;
m=1,2,...,n,Q;;(m,y,a,b) > 0. With this fact and from (4.7), we obtain 1 < llf_——Pl_— < 2
L;j(n,a) < 1, which is a contradiction. Therefore, B;;(n,b) C B;;(n,a) for all n > 1 when 9
b>a>0. .
o
An immediate result of Lemma 4.2 is: L7,
n n = :

L%
ﬂ Bij(m,b) C n Bij(m,a) for all n > 1 whenever b > a > 0. (4.8) <]
m=1 m=1 .Cf

4

For each n > 1,7, m; € Sp—1,1 # J, define Cyj(n) and D;;(n) as follows:

Cij(n) = {a > 0|Lij(n,a) < 1k_—13* } . (4.9) “,:“l‘f

oy _ fsupCyi(n) if Cij(n) # ¢, 7
Dij(n) = { 0 if Cyj(n) = ¢, (4.10) :-("“
y B
where ¢ denotes the empty set. Also, let D;;(n) = 0. From Lemma 4.2, if D;;(n) > 0, o
vy
then, Lij(n,a) < {£5 for all a € [0, D;;(n)) and L;j(n,b) > &=L for all b > D;;(n). v
For eachn > 2, if n; € S,,_,, define \
Di(n) = min ( max D;j(m)). (4.11)

1<m<n 7,65,
If mi & Sp—1, let ny = max{m|m; € Spn_1} and D;(n) = D;(n;).

By the definition of D;(n), for each ¢ = 1,...,k,{;(n)} is 2 nonincreasing sequence
and bounded below by zero. The value D;(n) will be used at stage n as an estimator of
an upper bound of §(;);. We note that the technique used to define D;(n) is from Hsu and

Edwards (1983) for location parameter model.

Theorem 4.2. T.et L;;(n,a}, S, and D;(n),n > 1 be those defined in (3.1), (3.2) and (4.1),
respectively. Then
k-1

1-P*
C{mk) € S and §xy; < D;i(n) for all m; € Sp,—; for all n > 1}.

{Lixy(n, b)) < for all m; € Sp_y — {7(xy} for all n > 1}

10
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W
:: Proof: By Lemma 4.2 and the fact that §(x); > 0, we have
W
At
k-1
" {Liry(n, 6(x),0) < TP for all m; € Sp—y ~ {mx)} foralln > 1}
A -
‘.:: C{L,-(k)(n,O) < TP and 6(x); < Dyx)(n) forall m; € Sy — {7r(k)} for alln > 1}
W
':: C{m(k) € § and é(x); < D;(x)(n) for all m; € Sp—y — {7(x)} for all n > 1} (4.12)
i C{7x) € S and Skyi < Iélg.x D;;(n) for all 7; € Sp—y for all n > 1}
;'. Xy n—1
:%: ={mu) € S and é(x); < D;(n) for all ; € Sp—y for all n > 1}.
|'Q
!

An immediage consequence of Theorems 4.1 and 4.2 is that for all § € 2, under

-y Conditions A and B.

Py{m(k) € S and 8(x); < D;i(n) for all m; € Sp_; for all n > 1} > P*. (4.13)
%2

' This result provides a sequential comparison inference, with confidence level at least P*,
P

- as follows: simultaneously, at each stage n, the best population is not eliminated and the

separation from the unknown best population to each contending population, say =;, up to

_ stage n, is not larger than the value D;(n) for all n > 1. Another consequence of Theorems
i“ 4.1 and 4.2 is that when the sequential selection procedure P(H,6*) terminates, the event
K]
. of a correct selection CS(6*) is guaranteed with probability at least P*. We state this
e result as a theorem as follows:

s

‘ Theorem 4.3. Let P(H,6*) be the sequential subset selection procedure defined in Section
3. Then, when the selection procedure P(H,6*) terminates, that Pg{CS(6*){P(H,6*)} >
N P* holds for all 4 € Q.

%

!
° Proof: Note that when the sequential selection procedure P(H,6*) terminates, then either
Y |S| = 1 or all the populations in S must have been labelled as good at some stage. Let
»E" N be the stopping time of the sequential selection procedure P(H,6*) and when |S| > 2,
¢
1 for each m; € S, let N; denote the first time at which #; was labelled as good. Hence,
o
: Lj(Ni,6*) > lk_'Pl. for all 7; € Sy, — {m,}. By the definition of D;;(n) and Lemma 4.2,
;:' D;ij(N;) < 6 for all m; € Sy, — {m,}, and thus, Dixy(Ni) < 6" if (i) € Sn; — {mi}. Also,
N
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g note that S = Sy and when (S| > 2,N; < N for all 7; € S. Now

N

. {m&) € S and 8(x); < Dy(x)(n) for all m; € Sp_1 — {m(x)} for all n > 1} (4.14)
:E C{m(k) € S and |S| =1} U {m(k) € S,|S| > 2 and 6(x); < Dyx)(Ni) for all m; € S — {m(x)}}
E: (since S C Sp_; for all n and N; < N for all ; € S)

. C{mxy € S and |S| = 1} U {n(x) € 5,|8] > 2 and bsy; < 6° for all m; € 5 — {4y}

31 A =CS(5*).

il

Then, by (4.14), (4.12) and Theorem 4.1, we have that for all § € 01,

%

; PCS(E)IP(H,6} 2 P

\ ’

;

:; 5. A Sequential Procedure for Selecting a Good Population

:j Consider a selection problem among k populations. In most applications, an exper-
e imenter is usually content with selecting a good population. Kao and Lai (1980) has
:: studied the problem of selecting a good population among k normal populations through
-:Il sequential approach. For our problem, with this selection goal, what we want is in fact a
": selection procedure having the property that

[~ Py{m; is selected and 6x); < 6*} > P* for all § € 1. (5.1)
~

v Also, the procedure should stop as soon as we are confident that a good population has
._ been found. A sequential selection procedure achieving this selection goal can be obtained
:. from P(H,6*) with a little modification on its stopping strategy. We now describe it as
:':: follows.

f.l

Let {Sn} be the sequence of sets of remaining populations defined in (3.2). For each
EE 7 € Sy, m; is labelled as good if L;j(n,6*) > l"_'Pl. for all m; € Sy, — {m;}. The procedure
':' terminates at stage n as soon as one of the populations in S, has been labelled as good.
If there is only one population in S, having been labelled as good, we then select this
: population as a good population. If more than one population have been labelled as good,
4 12
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we usually select the one with the smallest D;(n) value. We denote this modified sequential

selection procedure by P’.

The following theorem guarantees the desired confidence level of selecting a good

population by applying the selection procedure P’.

Theorem 5.1. Let P’ be the sequential selection procedure defined above. Then, Py{~; is

selected and é(x); < 6*|P'} > P* for all § € N, provided Conditions A and B hold.

-~

Note: The argument for the proof of this theorem is similar to that of Theorem 7 of Kao

and Lai (1980). For completeness, the proof is given as follows.

; Proof: Let A(8) = {Lix)(n,bk()) < l—lf_:;l; for all m; € Sp_y — {m(xy} for all n >}. Then by
Theorem 4.1, Pg{A(6)} > P* for all § € 1. We note that on the event A(f), by Lemma 4.2,
L;(x)(n,0) < 1_€_P_l' for all 7; € Sp_1 — {m(x)} for all n > 1. Therefore, m(x) can never be
eliminated in comparison with other populations at any stage. Let B(6) = {7;|6(:); > 6°}.
That is, B(f) is the set of bad populations. It suffices to show that on the event A(§), any

population in B(f) cannot be labelled as good when the procedure P’ terminates.

\ Let M be the stopping time of the sequential selection procedure P’. On A(f), since
Y T (k) can never be eliminated prior to the stopping time M, then m(yy € Spforall1<n <

M. Moreover, for each 7; € B(0),6(x); > 6* > 0 and on A(8), Lixy(n, 6(k)i) < lk_P’_ for

all 1 <n < M. Then by Lemma 4.2, L;x)(n,6") < l"_‘Pl. which means that 7; cannot be )

-

labelled as good. Hence, 7; cannot be selected as a good population. Therefore, for all j

f € Q, we have Py{n; is selected and §(4); < 6*|P'} > P*.

Appendix

Proof of Lemma 3.1. The proof is analogous to that of Lemma 1 of Pollak and Siegmund

(1975). Note that 82 > O since ; > 0;. For convenience, in the following, we let R
W(m) = Wu(m),Z(m) = Zlg(m),/\(m,a,b) = \Il(Zlg(m),a) - ‘I’(Z;z(m),b),éo = 612 and )
k

— k=1
a = 7=pz. Then, :

6° n n
Liz(n,0) = [ exp{yZW(m)— > A(m,y,O)}dH(w. )

13
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For each n, define T3, = min{T,,n} — 1, so that Ty, + 1 is a bounded stopping time.

Case 1. When 8y < ¢q where ¢; is given in Condition A.

From the definition of T,, we have

log o > log L12(T%n,0)
Tzn T2n

=6 Y W(m)— > A(m,é,0)
m=1 m=1

m=1

5 Tan Tz:
+ log/0 exp {(y — 6o) Z W(m) — Z A(m,y,&o)} dH(y) (A.1)
m=1

Tan Tan
> 60 ) [W(m) — ¥s(Z(m),b)] - ) " [60%(Z(m), 65) — A(m, 6o,0)]

T2n Ton
+ log‘/I e exp {(y — &) Z W (m) — Z /\(m,y,éo)} dH (y).

m=1 m=1

By using Taylor’s expansion,
1
A(m, y,60) = (y — 60) Us(z,60) + Jlv- 80)*Wss (2, ¢) (A.2)

where § = £(2,y,60) is a value between y and 6. By Condition B, we can find an ¢ so

small that |y — 60|Wss(Z(m), &) <1 ae. forall y € (60 — €,60 + €). We then obtain

Tan T2n
log /Iy-6ol<e exp {(y - 6o) mgl W(m) ~ Z A(m,y,éo)} dH(y)

m=1

Ton
> Iog/l Caie exp {(y — o) Z W (m) — ¥s(Z(m),60)] ~ € Tzn} dH(y) (A.3)
T2n

> log H(80 ~ €,60 + €) + (d — 60) Y _ [W(m) — Ws(Z(m),60)] — € Tam,

where H(8p — €,60 + €) = fly—6o|<c dH(y),d = fly—%l ydH (y)/H (60 ~ €,6, + €), and the
second inequality is obtained by Jensen’s inequality. From (2.6), (A.1) and (A.3), we have

T2n T2n
D_H(6lZ(m)) — €] +d Y [W(m) — W5(2(m), 6))
m=1 m=1
<loga —log H(6y — €,68 + €). (A.4)
14
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Therefore,
T2n+l T2n+1
Y- U(%]2(m)) —€]+d Y [W(m) — ¥s(Z(m), )]
m=1 m=1
<loga—logH(6o — €, 6o +¢€) + I(60|Z(T2n +1)) — €

+d[W (Tap + 1) — ¥5(Z(T2n + 1), b0)].

Now consider the expectation Ejy of both sides of (A.5). Since

Egl|W (m) — ¥s(2(m),60)) = Ey {annmm) - s(2(m), )]

0< EQ[I(&)]Z(m))] < E€[50\I/5(Z(m),5o)] = 50E€[W
Tan+1

S (W(m)

m=1

Thus, by Wald’s lemma, Ey [ - W¥s(Z(m),6)]| =0, and

nt1

Z

(%0]Z(m)) — el} = [Eg(Tzn +1)] x [Eg[1(50]2(1))]

Also, by Schwarz inequality,

- \Ilg(Z(T2n + 1),50)]
l)a 50)”

o)) Eg(Tzn + 1)} ¥

Eg[W (T3 + 1)
< E0[~|W(T2n +1)
< {BglW (1)
< M (60) [Eg(Tzn + 1)1,

- VUs(Z(T2n +
-W¥s(Z(1),6

15
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Z(m))

-

!

< {Eg Es,(|W (m) — ¥5(Z(m), &) |?
= {Ey(¥s(Z(m), 60)]}*
< M (b),
then,
EgW (m) — ¥s(Z(m), bo)] = Eg [Es,[W (m) — Ws(Z(m), 60)|Z(m)]] = O
Also,

(m)] < 0.
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;, Similarly,

-q Eo[I(&olZ(Tzu + 1)] < 50E0{‘I’5(Z(T2n + 1), 50)]

o = 6o Eg(W (T2n + 1)]

: ;

" < bo{Eg[W*(1)|Eg[T2n + 1)}%.

‘:: Therefore,

- {Eg1(60|Z(1))] — €} x {Eg[T2n + 1]}

¢ - -

;;E' <{&|Ep(W?*(1))]% + dM?% (6)} x {Eg Ton + 1}

4 , - 4

,‘:" —log H(6p — €, b0 + €) + log a,

i

R and so,

b s

::: {Eg(I(60|Z(1))] — €} x {EgT2n +1}2

.‘ ‘ - N

»i. <{6[Eg (W2(1))])% + dM?* (8)} — log H (6o — €, 60 + €) + log a. (A.6)

3 ‘ -~

@

1 Now, since I(60|Z(1)) is positive, € can be chosen so small that Eg[I(60)|Z(1)] — € > 0.
’.. -

:::: While the right-hand-side of (A.6) is independent of n, so, as n — oo, the left-hand-side
v

R of (A.6) is still bounded. Hence Eg(T2) < oo which implies that Py{T; < oo} = 1.

,!.E‘. Case 2. When ép > ¢q. From (A.1), we also have

D)

:‘::.-. Tan+1 Tan+1 Tan+1

',!:: D IeolZ(m)) +d Y [W(m)—s(Z(m),6)]+ Y {d[¥s(Z(m),b0) — ¥(Z(m),c0)] - &)
e m=1 m=1 m=1

E <loga—log H(co — €,¢0 + €) + d[W (Ton + 1) — ¥5(Z(T2n + 1), 60)]

ok

:: + d[\If5(Z(T2n + 1),60) - \I’(Z(Tzn + 1),60)].

)

Ll Following an argument analogous to the above, we have Ey[T;] < oo and so

® 4

2% Pg{Tz < OO} = 1.

. 4

c' .

:. Proof of Lemma 3.2. Note that §;3 = 0 since 8; = §,. Now,

o

5 n n

3 Lia(n8) = [ exp {(y $6) Y wm) + Y A(m,s*,y)} dH(y).

Yy o m=1 m=1

"

,';" By Jensen’s inequality, we have

ks n

o n~!log Liz(n,6%) > n! Z Vin, (A.T)

_. » m=1
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3

where V,, = f(f.{(y + 6*)W(m) + A(m, 6*,y)}dH(y),m = 1,2,...,n, are iid. By Lemma
2.1 and the fact that é;2 = 0, then,

h
EqlVl = [ Bgl¥(2(m),6%) - ¥(2(m),y)}dH (1)
> [7 B #(2(m),6%) - ¥(2(m), W)eEG) (48)
> [7 Byle(2(m),8) - w(z(m),co)laH ()

> 0.

By strong law of large numbers and by (A.7) and (A.8), we obtain lim infn~!log Ly2(n,6*)

n—oo

> [° Eg|¥(Z(m),6*)—¥(Z(m),co)]dH (y) a.e. while n=! log & — 0 as n — co. Therefore,
Pg{Ty2 < oo} = 1 when 8; = 8,. Similarly Pg{T21 < oo} =1 and thus Py{T) < oo} =1

when 8, = 8,.
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